Solution

DPP NO. - 8

1. $\vec{A}=2 \hat{i}+9 \hat{j}+4 \hat{k}$
$4 \vec{A}=8 \hat{i}+36 \hat{j}+16 \hat{k}$
2. \qquad magnitude \& direction must be same.
3. $\frac{d y}{d x}=x . e^{x}+e^{x}=(x+1) e^{x}=0 ; \quad x=-1$;

$$
\frac{d^{2} y}{d x^{2}}>0 \text { for } x=-1
$$

4. $\frac{d y}{d x}=\frac{d}{d x}\left(x^{5}-5 x^{4}+5 x^{3}-10\right)=5 x^{4}-20 x^{3}+15 x^{2}$
$=0 \quad ; \quad x=3,0,1$
$\frac{d^{2} y}{d x^{2}}<0 \quad$ at $x=1$
5. $\overrightarrow{\mathrm{A}}=2 \hat{i}+3 \hat{j}$
$\vec{A}=\frac{2 \hat{i}+3 \hat{j}}{\sqrt{4+9}}=\frac{2 \hat{i}+3 \hat{j}}{\sqrt{13}}$

6*. (B) \qquad (D) \vec{A}
7. $\mathrm{A}_{\mathrm{x}}=2$
$A_{y}=2 \sqrt{3}$
$A=\sqrt{A_{x}^{2}+A_{y}^{2}}$

$$
=\sqrt{4+12}=4
$$

9. $\vec{B}=3 \mathrm{j}$

3 units

DPP NO. - 9

1. $(\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}})=7 \hat{\mathrm{i}}-9 \hat{\mathrm{j}}$
$\therefore|\vec{A}+\vec{B}|=\sqrt{49+81}=\sqrt{130}$
2. unit vector $=\frac{3 \hat{i}+3 \hat{j}}{\sqrt{3^{2}+3^{2}}}=\frac{\hat{i}+\hat{j}}{\sqrt{2}}$
3. Apply triangle law of vector addition.
4. $\left(A^{2}+B^{2}+2 A B \cos \theta\right)=\frac{1}{4}\left(A^{2}+B^{2}-2 A B \cos \theta\right)$
$\Rightarrow 3 \mathrm{~A}^{2}+3 \mathrm{~B}^{2}+10 \mathrm{AB} \cos \theta=0$
or $12 B^{2}+3 B^{2}+10(2 B)(B) \cos \theta=0$
$15 B^{2}+20 B^{2} \cos \theta=0$
$\cos \theta=-\frac{3}{4}$
5. Since $\vec{B}=3 \vec{A}$, so both are parallel.
6. $\operatorname{Velocity~}=($ speed $) \hat{A}$
$=6 \frac{(2 \hat{i}+2 \hat{j}-\hat{k})}{\sqrt{4+4+1}}=(4 \hat{i}+4 \hat{j}-2 \hat{k})$ units.
7. $\quad \vec{P}-\vec{Q}=(\hat{i}+\hat{j}-\hat{k})-(\hat{i}-\hat{j}+\hat{k})=2 \hat{j}-2 \hat{k}$
\therefore unit vector along

$$
\vec{P}-\vec{Q}=\frac{(\vec{P}-\vec{Q})}{|\vec{P}-\vec{Q}|}=\frac{2 \hat{j}-2 \hat{k}}{\sqrt{(2)^{2}+(-2)^{2}}}
$$

$\therefore \quad \vec{P}-\vec{Q}=\frac{(\vec{P}-\vec{Q})}{|\vec{P}-\vec{Q}|}=\frac{2 \hat{j}-2 \hat{k}}{\sqrt{(2)^{2}+(-2)^{2}}}$

$$
=\frac{2 \hat{j}-2 \hat{k}}{\sqrt{4+4}}=\frac{2 \hat{j}-2 \hat{k}}{2 \sqrt{2}}=\frac{\hat{j}-\hat{k}}{\sqrt{2}}
$$

$\frac{4 y}{5}-x=3$
$\frac{3 y}{5}=6 \Rightarrow y=10$
Putting 8-x $=3 \Rightarrow x=5$
DPP NO. - 10

1. $S_{t}+S_{t+1}=100$
$u+\frac{1}{2} f(2 t-1)+u+\frac{1}{2} f[2(t+1)-1]=100$
$2 u+\frac{1}{2} f(2 t-1+2 t+1)=100$
$2 \mathrm{u}+2 \mathrm{ft}=100$
$\mathrm{u}+\mathrm{ft}=50$
$v=50 \mathrm{~cm} / \mathrm{s}$.
2.

So, $A>B$
3. time taken by car to cover first half distance.
$=\frac{1}{40} \mathrm{hr}=\frac{1}{40} \times 60 \mathrm{~min}=1.5 \mathrm{~min}$.
Remaining time $=2.5-1.5=1 \mathrm{~min}$.
required speed $=\frac{1 \mathrm{~km}}{1 \mathrm{~min}}=60 \mathrm{~km} / \mathrm{hr}$
4. $r=\sqrt{a^{2}-t^{2}}+t \cos t^{2}$
$V=\frac{d r}{d t}=\frac{1}{2}\left(a^{2}-t^{2}\right)^{-1 / 2}(-2 t)+t\left(-\sin t^{2}\right) 2 t$.
$+\cos t^{2}$.
$V=-\frac{t}{\sqrt{a^{2}-t^{2}}}-2 t^{2} \sin t^{2}+\cos t^{2}$.

Comparing coefficients of $\hat{i} \& \hat{j}$ both sides-
$=115+7(-15)=10 \mathrm{~cm} / \mathrm{s}$.

DPP NO. - 11

5.

Net displacement $=50 \mathrm{~km}$
6. $\sqrt{x}=(2 t-3)$ for B option
$x=(2 t-3)^{2}$
accelerated
for $t>3 / 2$
$\frac{d x}{d t}=2(2 t-3)(2)=4(2 t-3)$
$V=4(2 t-3)=0$
rest at $t=3 / 2$
$\mathrm{a}=8 \mathrm{~m} / \mathrm{s}$.
7. since $\frac{\text { Dis } \operatorname{tance}}{\Delta \mathrm{t}} \geq \frac{\mid \text { Displacement } \mid}{\Delta \mathrm{t}}$
aV speed $\geq \mid \mathrm{aV}$. velocity \mid
in uniform circular motion speed is constant but acc. $\neq 0$
in uniform circle motion after one round average velocity becomes zero.
8. Let u be initial velocity \& a be its acceleration

Distance in first $2 \mathrm{sec}=\mathrm{S}_{1}=200 \mathrm{~cm}$

$$
\begin{align*}
& \Rightarrow u(2)+\frac{1}{2} a(2)^{2}=200 \mathrm{~cm} \\
& \Rightarrow u+a=100 \tag{i}
\end{align*}
$$

Distance in next $4 \mathrm{sec} .=\mathrm{S}_{2}=220 \mathrm{~cm}$
Distance in first $6 \mathrm{sec} .=S_{1}+S_{2}=200+220 \mathrm{~cm}$
$\Rightarrow u(6)+\frac{1}{2} \mathrm{a}(6)^{2}=420$
$\Rightarrow u+3 \mathrm{a}=70$
From equations (i) \& (ii), we get

$$
\mathrm{a}=-15 \mathrm{~cm} / \mathrm{s}^{2}, \mathrm{u}=115 \mathrm{~cm} / \mathrm{s}
$$

Hence, velocity at the end of 7 sec . from start
$=u+7 a$

1. Let u be velocity of ball with which it is thrown.
$h=u t+\left(-\frac{1}{2} g t^{2}\right) \quad 25=u t-5 t^{2}$
$5 t^{2}-u t+25=0$ Let t_{1}, t_{2} be its roots

$$
\mathrm{t}_{1}+\mathrm{t}_{2}=\mathrm{u} / 5, \quad \mathrm{t}_{1} \mathrm{t}_{2}=5
$$

Given, $\quad t_{2}-t_{1}=4 \mathrm{sec}$.

$$
\left(t_{2}-t_{1}\right)^{2}=16
$$

$\Rightarrow\left(\mathrm{t}_{2}+\mathrm{t}_{1}\right)^{2}-4 \mathrm{t}_{1} \mathrm{t}_{2}=16$
$\left(\frac{u}{5}\right)^{2}-4 \times 5=16 \quad u=30 \mathrm{~m} / \mathrm{sec}$.
2. For a freely falling body
$S=\frac{1}{2} g t^{2} \quad S \propto t^{2}$.
3. $\mathrm{v}(2)=\mathrm{v}(0)+$ area under a-t graph from $\mathrm{t}=0$
to $t=2$
$=2+\frac{1}{2}(2)(4)=6 \mathrm{~m} / \mathrm{s}$.
4. Distance covered in first 10 sec
$S_{i}=\frac{1}{2}(10)(10)^{2}=500 \mathrm{~m}$
Remaining height from ground $=2495-500$ $=1995 \mathrm{~m}$
$u=g t=10 \times 10=100 \mathrm{~m} / \mathrm{s}$ velocity on reaching the ground
$v^{2}=(100)^{2}+2(-2.5) \times 1995$
$v^{2}=10000-9975=25$
$\mathrm{v}=5 \mathrm{~m} / \mathrm{s}$.
5. Suppose the particle starts from origin at $t=0$. Then at any time t,
$x \propto t^{3}$
$x=k t^{3} \quad(K=$ constant $)$
$v=\frac{d x}{d t}=3 k t^{2}$
$\mathrm{a}=\frac{\mathrm{dv}}{\mathrm{dt}}=6 \mathrm{kt}$
$a \propto t$.
6. Displacement $=0(\because$ initial position $=$ final position)
www.aviral.co.in
7. $\mathrm{V}=\left(3 \mathrm{t}^{2}-18 \mathrm{t}+24\right) \mathrm{m} / \mathrm{s}$
$V=3(t-2)(t-4)$
$\mathrm{S}=\left|\int_{0}^{2} \mathrm{Vdt}\right|+\left|\int_{2}^{3} \mathrm{Vdt}\right|$
$=\left|\int_{0}^{2}\left(3 t^{2}-18 t+24\right) d t\right|+\left|\int_{2}^{3}\left(3 t^{2}-18 t+24\right) d t\right|$
$|20|+|-2|=22 m$
8. $\mathrm{V}=3(\mathrm{t}-2)(\mathrm{t}-4)$
$a=6(t-3)$
common interval in which V and a both have posite sign is 0 to 2 sec
9. Velocity time graph will be

Speed time graph = |Velocity time graph \mid

DPP NO. - 12

1. Plotting velocity v against time t, we get

Area under the $v-t$ curve gives distance.
Distance $=\frac{1}{2} \times 2 \times 2+\frac{1}{2} \times 2 \times 2=4 m$
2. Obviously slope of $v-t$ graph is changed at $t=2$, $4,6, \ldots \ldots . .$. in direction but it has constant magnitude.
3. Instantaneous, acceleration = slope of v-t graph hence, obviously, a-t graph will be as shown,

4. (A)
$\vec{r}=\left(t^{2}-4 t+6\right) \hat{i}+t^{2} \hat{j} ; \vec{v}=\frac{d \vec{r}}{d t}=(2 t-4) \hat{i}+2 t \hat{j}$
, $\vec{a}=\frac{d \vec{v}}{d t}=2 \hat{i}+2 \hat{j}$
if \vec{a} and \vec{v} are perpendicular
$\vec{a} \cdot \vec{v}=0$
$(2 \hat{i}+2 \hat{j}) \cdot((2 t-4) \hat{i}+2 t \hat{j})=0$
$8 \mathrm{t}-8=0$
$t=1 \mathrm{sec}$.
Ans. $\mathrm{t}=1 \mathrm{sec}$.
5. $\frac{S_{N}}{S}=\frac{\frac{1}{2} a(2 n-1)}{\frac{1}{2} a n^{2}}=\frac{2 n}{n^{2}}-\frac{1}{n^{2}} \quad \frac{2}{n}-\frac{1}{n^{2}}$
6.

on placing back face and bottom face in same plane.

A \rightarrow starting point $\quad G \rightarrow$ final point
minimum time $=\frac{\sqrt{5} a}{u}$
7.

displacement(m)

Maximum displacement is a 25 sec . displacement $=$ $25+50+62.5+75=212.5 \mathrm{~m}$.
8. (i) Impossible: Speed is always positive
(ii) Impossible: Time never decreases.
(iii) Possible: Velocity may increase with time.

DPP NO. - 13

1. At $\mathrm{t}=4 \mathrm{sec}, \mathrm{V}=0+(4)(4)=16 \mathrm{~m} / \mathrm{sec}$.

At $\mathrm{t}=8 \mathrm{sec}, \mathrm{V}=16 \mathrm{~m} / \mathrm{sec}$.
At $t=12 \mathrm{sec}, \mathrm{V}=16-4(12-8)=0$
For 0 to $4 \mathrm{sec} ; \mathrm{s}_{1}=1 / 2$ at $^{2}=1 / 2(4)(4)^{2}=32 \mathrm{~m}$
For 4 to $8 \mathrm{sec} ; \mathrm{s}_{2}=16(8-4)=64 \mathrm{~m}$
For 8 to $12 \mathrm{sec} ; \mathrm{s}_{3}=16(4)-1 / 2(4)(4)^{2}=32 \mathrm{~m}$
So $\mathrm{s}_{1}+\mathrm{s}_{2}+\mathrm{s}_{3}=32+64+32=128 \mathrm{~m}$
Alter: Draw v-t graph
Area of v -t graph $=$ displacement.
2. Using $v_{x}=u_{x}+a_{x} t$
$=4 i+(2 i) 4$
$=12 \mathrm{i}$
As $\mathrm{a}_{\mathrm{y}}=0$, velocity component in y -direction remains unchanged. Final velocity $=12 i-5 j$
speed at $t=4 \mathrm{sec} .=\sqrt{12^{2}+(-5)^{2}}=13 \mathrm{~m} / \mathrm{s}$.
$v_{x}=u_{x}+a_{x} t^{t}$
$=4 \mathrm{i}+(2 \mathrm{i}) 4$
$=12 \mathrm{i}$
4. $V=a+b x$
(V increases as x increases)
$\frac{d V}{d x}=b ; \frac{d x}{d t}=V$
so, acceleration $=\mathrm{V} \frac{\mathrm{dV}}{\mathrm{dx}}=\mathrm{V} . \mathrm{b}$
hence acceleration increases as V increases with x .
5. The retardation is given by
$\frac{d v}{d t}=-a v^{2}$
integrating between proper limits
$\Rightarrow-\int_{u}^{v} \frac{d v}{v^{2}}=\int_{0}^{t} a d t$
or $\frac{1}{v}=a t+\frac{1}{u}$
$\Rightarrow \frac{\mathrm{dt}}{\mathrm{dx}}=\mathrm{at}+\frac{1}{\mathrm{u}}$
$\Rightarrow \mathrm{dx}=\frac{\mathrm{udt}}{1+\mathrm{aut}}$
integrating between proper limits
$\Rightarrow \quad \int_{0}^{s} d x=\int_{0}^{t} \frac{u d t}{1+a u t}$
$\Rightarrow \quad S=\frac{1}{a} \ln (1+a u t)$

Sol. 6 to 8

The velocity of particle changes sign at $\mathrm{t}=1 \mathrm{sec}$.
\therefore Distance from $\mathrm{t}=0$ to $\mathrm{t}=2$ sec. is
$=\int_{1}^{0} v d t+\int_{2}^{1} v d t$
$=\left[\left(t^{3}-\frac{3}{2} t^{2}\right)\right]_{1}^{0}+\left[\left(t^{3}-\frac{3}{2} t^{2}\right)\right]_{2}^{1}=3 m$

Displacement from $t=0$ to $t=2$ sec. is $\int_{0}^{2} v d t$
$=\left[\left(t^{3}-\frac{3}{2} t^{2}\right)\right]_{0}^{2}=2 m$.

DPP NO. - 14

1. $m=2 k g, \vec{F}=\hat{i}-\hat{j}$.
$\Rightarrow \quad \vec{a}=\frac{\vec{F}}{m}=\frac{1}{2}(\hat{i}-\hat{j})$
Now $\quad \vec{V}=\vec{u}+\vec{a} t$.
$\Rightarrow \vec{V}=2 \hat{i}+\frac{1}{2}(\hat{i}-\hat{j}) t$.
$=\left(2+\frac{t}{2}\right) \hat{i}-\frac{t}{2} \hat{j}=\frac{1}{2}(t+4) \hat{i}-\frac{t}{2} \hat{j}$.

Alter : Substitute $\mathrm{t}=0$ in option and get answer
2. $x^{2}=t^{2}+1$
$2 x \frac{d x}{d t}=2 t$
$\Rightarrow x V=t$
$x a+V^{2}=1$
$a=\frac{1-v^{2}}{x}=\frac{1-\frac{t^{2}}{x^{2}}}{x}$
$\Rightarrow \quad a=\frac{x^{2}-t^{2}}{x^{3}}=\frac{1}{x^{3}}$
3. $54 \mathrm{~km} / \mathrm{h}=54 \times \frac{5}{18}=15 \mathrm{~m} / \mathrm{s}$
$<\mathrm{a}>=\frac{15-(-15)}{10}=3 \mathrm{~m} / \mathrm{s}^{2}$.
4. For minimum number of jumps, range must be maximum.
maximum range $=\frac{\mathrm{u}^{2}}{\mathrm{~g}}=\frac{(\sqrt{10})^{2}}{10}=1$ meter.
Total distance to be covered $=10$ meter
So total step $=10$
5. From 6:00 AM to 6:30 AM
displacement of tip of minute hand
$=2 \times 10 \mathrm{~cm}=20 \mathrm{~cm}$
Hence, average velocity $=\frac{20 \mathrm{~cm}}{30 \mathrm{~min}}=\frac{2}{3} \mathrm{~cm} \mathrm{~min}^{-1}$.
6. Vel. of Ist stone when passing at $\mathrm{A} \rightarrow$
$V^{2}=0+2.10 .5$
$\mathrm{V}=10 \mathrm{~m} / \mathrm{s}$
$S_{1}-S_{2}=20 \mathrm{~m}$.
$\Rightarrow\left(10 \cdot t+\frac{1}{2} 10 \cdot t^{2}\right)-\left(\frac{1}{2} \cdot 10 \cdot t^{2}\right)=20$

$t=2 s$
$S_{2}=\frac{1}{2} \cdot 10 \cdot 4=20 \mathrm{~m}$
$H t=25+20=45 \mathrm{~m}$.
7. $\cos \theta=\frac{(\sqrt{3} \hat{i}+\sqrt{2} \hat{j}-2 \hat{k}) \cdot(-\hat{j})}{\sqrt{3+2+4}(1)}=\frac{-\sqrt{2}}{3}$

$$
\theta=\cos ^{-1}\left(\frac{-\sqrt{2}}{3}\right) \quad \text { or } \quad \pi-\cos ^{-1}\left(\frac{\sqrt{2}}{3}\right)
$$

8. $\frac{d v}{d t}=g-k v \quad \int_{0}^{v} \frac{d v}{g-k v}=\int_{t=0}^{t} d t$

$$
-\frac{1}{k} \ln \left(\frac{g-k v}{g}\right)=t
$$

$g-k v=g e^{-k t} \quad v=\frac{g}{k}\left[1-e^{-k t}\right]$
$a=\frac{g}{k}\left[0-e^{-k t}(-k)\right]$
$=g e^{-k t}$
$\mathrm{V}=\frac{\mathrm{g}}{\mathrm{k}}-\frac{\mathrm{a}}{\mathrm{k}}=-\frac{\mathrm{a}}{\mathrm{k}}+\frac{\mathrm{g}}{\mathrm{k}}$
$\mathrm{V}-\frac{\mathrm{g}}{\mathrm{k}}=-\frac{\mathrm{a}}{\mathrm{k}}$
$k v-\mathrm{g}=-\mathrm{a}$
$a=g-k v$
$=-\mathrm{kv}+\mathrm{g}$
9. (i) $V \frac{d v}{d x}=-\beta V \quad$ (ii) $a=-\beta V$
$d v=-\beta d x \quad \frac{d v}{d t}=-\beta V$
$\int_{v_{0}}^{0} d v=-\beta \int_{0}^{x} d x \quad \int_{v_{0}}^{v} \frac{d v}{v}=-\beta \int_{0}^{t} d t$
$-v_{0}=-\beta x \quad \ln \left(\frac{V}{V_{0}}\right)=-\beta t$
$x=\frac{v_{0}}{\beta}$
$\mathrm{V}=\mathrm{V}_{0} \mathrm{e}^{-\beta t}$
$V=\frac{V_{0}}{e^{\beta t}} \quad$ at $t \rightarrow \infty V=0$.
$\therefore \mathrm{A} \& \mathrm{~B}$ are correct answer
10. $u=+8 \mathrm{~m} / \mathrm{s}$
$a=-4 \mathrm{~m} / \mathrm{s}^{2}$
$\mathrm{v}=0$
$\Rightarrow 0=8-4 \mathrm{t}$ or $\mathrm{t}=2 \mathrm{sec}$.
displacement in first 2 sec.
$S_{1}=8 \times 2+\frac{1}{2} \cdot(-4) \cdot 2^{2}=8 \mathrm{~m}$
displacement in next 3 sec.
$S_{2}=0 \times 3+\frac{1}{2}(-4) 3^{2}=-18 \mathrm{~m}$.
distance travelled $=\left|S_{1}\right|+\left|S_{2}\right|=26 \mathrm{~m}$.
Ans. 26 m.

ALITER :

total distance $=\frac{1}{2} \times 2 \times 8+\frac{1}{2} \times 3 \times 12$
$=8+18=26 \mathrm{~m}$

DPP NO. - 15

2. At maximum height $v=u \cos \theta$
$\frac{u}{2}=v \Rightarrow \cos \theta=\frac{1}{2} \Rightarrow \theta=60^{\circ}$
$R=\frac{u^{2} \sin 2 \theta}{g}=\frac{u^{2} \sin \left(120^{\circ}\right)}{g}$
$=\frac{u^{2} \cos 30^{\circ}}{g}=\frac{\sqrt{3} u^{2}}{2 g}$
3. At the top of trajectory,
$K^{\prime}=\frac{1}{2} m(u \cos \theta)^{2}$
$=\frac{1}{2} m u^{2} \cdot \cos ^{2} 45^{\circ}=\frac{k}{2}$.
4. For A

Velocity of the particle will be perpendicular to the initial direction when $10-\mathrm{g} \sin 30^{\circ} \mathrm{t}=0$
$\therefore \mathrm{t}=2 \mathrm{~s}$,
but total time of flight $=\frac{2 u \sin 30^{\circ}}{g}=1 \mathrm{~s}$.
So not possible
For B
Minimum speed during the motion is
$=u \cos 30^{\circ}=10 \times \frac{\sqrt{3}}{2}=5 \sqrt{3} \mathrm{~m} / \mathrm{s}$.
For B
$t=\frac{1}{2}$ second
\therefore particle is at highest point.
where, displacement $=\sqrt{\frac{R^{2}}{4}+H^{2}}=\frac{5 \sqrt{13}}{4} m$
5. For maximum range, $\theta=45^{\circ}$

At the highest point, $v=u \cos \theta=\frac{u}{\sqrt{2}}$
6. Range is same for 2θ and 4θ.
$\therefore 2 \theta+4 \theta=90^{\circ} \Rightarrow \theta=15^{\circ}$
\therefore Ratio of ranges will be $\sin 30^{\circ}: \sin 60^{\circ}: \sin 120^{\circ}$.
$\frac{1}{2}: \frac{\sqrt{3}}{2}: \frac{\sqrt{3}}{2} \Rightarrow \frac{2}{\sqrt{3}}: 2: 2$
7. $y=u_{x} t-\frac{1}{2} \cdot g t^{2}=10 \times 1-5 \times 1^{2}=5 m$
$x=u_{x} t \quad=10 \times 1=10 \mathrm{~m}$
8. For constant acceleration if initial velocity makes an oblique angle with acceleration then path will be parabolic.

DPP NO. - 16

1. $y=x \tan \theta\left(1-\frac{x}{R}\right) y=(12 x)\left(1-\frac{x}{16}\right)$
\Rightarrow Range $=16 \mathrm{~m}$ Ans.
2.

$y=4 t-t^{2}, x=3 t$
$V_{y}=\frac{d y}{d t}=4-2 t, V_{x}=\frac{d x}{d t}=3$
$\Rightarrow \mathrm{u}_{\mathrm{y}}=\left.\mathrm{v}_{\mathrm{y}}\right|_{\mathrm{t}=0}=4, \mathrm{u}_{\mathrm{x}}=\left.\mathrm{v}_{\mathrm{x}}\right|_{\mathrm{t}=0}=3$
The angle of projection :
$\tan \theta=\frac{\mathrm{V}_{\mathrm{y}}}{\mathrm{V}_{\mathrm{x}}}=\frac{4}{3} \Rightarrow \theta=\tan ^{-1}\left(\frac{4}{3}\right)$ Ans.
3. $\mathrm{V}_{\mathrm{A}} \sin 60^{\circ}=\mathrm{V}_{\mathrm{B}}$
$\Rightarrow \frac{\mathrm{V}_{\mathrm{A}}}{\mathrm{V}_{\mathrm{B}}}=\frac{2}{\sqrt{3}}$
4. $t=t_{1}+t_{2}$
slope of $O A$ curve $=\tan \theta=\alpha=\frac{v_{\max }}{t_{1}}$
slope of $A B$ curve $=\beta=\frac{v_{\text {max }}}{t_{2}}$

$\Rightarrow t=\frac{v_{\text {max }}}{\alpha}+\frac{v_{\text {max }}}{\beta} \Rightarrow v_{\text {max }}=\left(\frac{\alpha \beta}{\alpha+\beta}\right) t$
5. The velocity of an object released in a moving frame is equal to that of the frame as observed from the frame.
6. velocity of ball w.r.t. ground $=20-10=10 \mathrm{~m} / \mathrm{sec}$ upwards.
$x=u t+\frac{1}{2} a t^{2}$
$120=-10 t+\frac{1}{2} \times 10 t^{2}$
$24=-2 t+t^{2}$
$\mathrm{t}^{2}-2 \mathrm{t}-24=0$
$\mathrm{t}=6 \mathrm{sec}$.
7. $\frac{\mathrm{H}}{\mathrm{R}}=\frac{\tan \theta}{4}$

$$
\begin{aligned}
& \theta=45^{\circ} \& R=36 \mathrm{~m} \\
& H=9 \mathrm{~m}
\end{aligned}
$$

8.

$\mathrm{h}=$ height of the point where velocity makes 30° with horizontal.
As the horizontal component of velocity remain same $50 \cos 45^{\circ}=\mathrm{v} \cos 30^{\circ}$

$$
v=50 \sqrt{\frac{2}{3}}
$$

Now by equation

$$
v^{2}=u^{2}+2 a_{y} y
$$

$$
\left(50 \times \sqrt{\frac{2}{3}}\right)^{2}=50^{2}-2 \mathrm{gxh}
$$

$$
\Rightarrow 2 \mathrm{gh}=50^{2}-50^{2} \times \frac{2}{3}
$$

$$
\Rightarrow 2 \mathrm{gh}=\frac{1}{3} \times 50^{2}
$$

$\Rightarrow \mathrm{h}=\frac{2500}{60}=\frac{125}{3}$
$h=\frac{125}{3} m$ above point of projection
9. (A) $R=\frac{u^{2} \sin 2 \theta}{g}=\frac{100 \sqrt{3}}{2(10)}=5 \sqrt{3} \mathrm{~m}$
(B) $11.25=-10 \sin 60^{\circ} \mathrm{t}+\frac{1}{2}(10) \mathrm{t}^{2}$
$\Rightarrow 5 t^{2}-5 \sqrt{3} t-11.25=0$
$t=\frac{5 \sqrt{3} \pm \sqrt{25(3)+4(5)(11.25)}}{10}$
$=\frac{5 \sqrt{3} \pm \sqrt{3}(10)}{10}$
$=\frac{15}{10} \sqrt{3}=\frac{3}{2} \sqrt{3}$

$$
R=10 \cos 60\left(\frac{3}{2} \sqrt{3}\right)=7.5 \sqrt{3} \mathrm{~m}
$$

(C) $t=\frac{2 u \sin 30^{\circ}}{g \cos 30^{\circ}}=\frac{2(10)\left(\frac{1}{2}\right)}{10\left(\frac{\sqrt{3}}{2}\right)}=\frac{2}{\sqrt{3}} \mathrm{sec}$.
$R=10 \cos 30^{\circ} t-\frac{1}{2} g \sin 30^{\circ} t^{2}$
$=\frac{10 \sqrt{3}}{2}\left(\frac{2}{\sqrt{3}}\right)-\frac{1}{2}(10)\left(\frac{1}{2}\right) \frac{4}{3}$
$=10-\frac{10}{3}=\frac{20}{3} \mathrm{~m}$
(D) $\mathrm{T}=\frac{2(10)}{\mathrm{g} \cos 30}=\frac{2(10)}{10\left(\frac{\sqrt{3}}{2}\right)}=\frac{4}{\sqrt{3}} \mathrm{sec}$.

$R=\frac{1}{2} g \sin 30^{\circ} t^{2}$
$=\frac{1}{2}(10)\left(\frac{1}{2}\right) \frac{16}{3}=\frac{40}{3} \mathrm{~m}$

DPP NO. - 17

1. $2=\frac{2 u_{y}}{g} \Rightarrow u_{y}=10 \mathrm{~m} / \mathrm{s}$

Now, $\quad H=-u_{y} t+\frac{1}{2} g t^{2}$
$=-30+45=15 \mathrm{~m}$.
3. The horizontal displacement in time t is $A C=u \cos 60^{\circ} t=\frac{u t}{2}$
\therefore Range on inclined plane $=\frac{\mathrm{AC}}{\cos 30}=\frac{\mathrm{ut}}{\sqrt{3}}$

4. $V=x^{2}+x$
$a=V \frac{d v}{d x}=\left(x^{2}+x\right)(2 x+1)$
At $\mathrm{x}=2 \mathrm{~m}$
$a=(4+2)(4+1)$
$\mathrm{a}=30 \mathrm{~m} / \mathrm{s}^{2}$.
6. $X_{A}=X_{B}$
$10.5+10 \mathrm{t}=\frac{1}{2} \mathrm{at}^{2} \quad \mathrm{a}=\tan 45^{\circ}=1$
$t^{2}-20 t-21=0 \quad t=\frac{20 \pm \sqrt{400+84}}{2} t=21 \mathrm{sec}$.
7. $S_{1}-S_{2}=125 \mathrm{~m}$ if $S_{1}>S_{2}$ then
$50 t-\frac{1}{2} \times 10 t^{2}=125$
$10 t-t^{2}=25$
$t^{2}-10 t+25=0$
$\mathrm{t}=5 \mathrm{sec}$.
$S_{2}-S_{1}=125 m$ if $S_{2}>S_{1}$ then,
$\frac{1}{2} \times 10 t^{2}-50 t=125$
$t^{2}-10 t-25=0$
$t=\frac{10+\sqrt{100+100}}{2}$
$t=5(1+\sqrt{2}) \mathrm{sec}$.
(8 to9) $\vec{V}_{h M}=\vec{V}_{h}-\vec{V}_{M}=10 j-10 i=-10 i+10 j$
$\therefore \overrightarrow{\mathrm{V}}_{\mathrm{hM}}=10(-\mathrm{i})+10 \mathrm{j}$
\therefore As seen bny
the monkey helicopter is moving in ($($) direction.

$$
\vec{V}_{B h}=\vec{V}_{B}-\vec{V}_{h}=15 i-10 j=15 i+10(j)
$$

\therefore As seen by helicopter's pilot the bus is moving in (\searrow) direction.

DPP NO. - 18

1. All the velocities are marked in diagram where G represents ground

adding we get

Then $\vec{V}_{G D}+\vec{V}_{D C}+\vec{V}_{C B}+\vec{V}_{B A}=\vec{V}_{G A}=-\vec{V}_{A G}$
2. Vboat, river $=4 \hat{\mathrm{i}}$

Vriver, ground $=2 \hat{i}$
Vwind, ground $=6 \hat{j}$

\vec{V} wind, boat $=\vec{V}_{w g}+\overrightarrow{V g r}+\vec{V}_{r b}=6 \hat{j}-2 \hat{j}-4 \hat{i}$
$=-4 \hat{i}+4 \hat{j}$
so flag blown in north west.
3. Let u and v denote initial and find velocity, then then nature of motion is indicated in diagram

Hence initial and final speed are given by equation $0^{2}=u^{2}-2 a \times 2 S$ and $v^{2}=0^{2}+2 a s$
$\therefore \quad v=\frac{u}{\sqrt{2}} \quad$ or $\frac{u}{v}=\sqrt{2}$
Ans.
4. $\overrightarrow{\mathrm{V}}_{\mathrm{O}, \mathrm{M}}=\overrightarrow{\mathrm{V}}_{\mathrm{O}}-\overrightarrow{\mathrm{V}}_{\mathrm{M}} \quad \overrightarrow{\mathrm{V}}_{\mathrm{O}, \mathrm{M}}=\overrightarrow{\mathrm{V}}_{\mathrm{O}}-\overrightarrow{\mathrm{V}}_{\text {Train }}$
$\mathrm{V}_{\mathrm{O}, \mathrm{M}}=$ velocity of object with respect to man
$\mathrm{V}_{\mathrm{O}}=$ velocity of object
$V_{M}=$ velocity of man
Here velocity of object is zero.
So, $\vec{V}_{\mathrm{O}, \mathrm{M}}=-\overrightarrow{\mathrm{V}}_{\mathrm{M}}$
5. If $|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{u}}|=0$ particle will not follow curved path.

Above described motion is a projectile motion with parabolic path
6. At maximum height, velocity $=0$
$H=\frac{u^{2}}{2 g}$ \&
At height $h=H / 2 \quad V^{2}=u^{2}-2 g h$
$V^{2}=u^{2}-2 g \cdot \frac{u^{2}}{4 g} \quad V^{2}=\frac{u^{2}}{2} \quad \Rightarrow \quad V=\frac{u}{\sqrt{2}}$

Hence velocity of A is towards south east.

Time taken to rise to maximum height $\mathrm{T}=\frac{\mathrm{u}}{\mathrm{g}}$
for height $h=\frac{H}{2} t=\frac{(u-u / \sqrt{2})}{g}=\frac{(\sqrt{2}-1) u}{\sqrt{2} g}$
Time taken to rise to $\frac{3}{4} \mathrm{H}=\mathrm{T}$ - time taken to fall
down by $\frac{\mathrm{H}}{4}$
$=T-\frac{T}{2}=\frac{T}{2}$
7. Let velocity of bodies be v_{1} and v_{2}.
in first case
$\mathrm{u}_{1}=\mathrm{v}_{1}+\mathrm{v}_{2}$
in second case
$\mathrm{u}_{2}=\mathrm{v}_{1}-\mathrm{v}_{2}$
$\therefore \mathrm{v}_{1}=\frac{\mathrm{u}_{1}+\mathrm{u}_{2}}{2} \quad$ and $\mathrm{v}_{2}=\frac{\mathrm{u}_{1}-\mathrm{u}_{2}}{2}$
Here $u_{1}=\frac{16}{10} \mathrm{~m} / \mathrm{s}$ and $u_{2}=\frac{3}{5} \mathrm{~m} / \mathrm{s}$
After solving we have
$v_{1}=1.1 \mathrm{~m} / \mathrm{s} \quad$ and $\mathrm{v}_{2}=0.5 \mathrm{~m} / \mathrm{s}$.
8. The initial velocity of A relative to B is $\vec{u}_{A B}=\vec{u}_{A}-\vec{u}_{B}$
$=(8 \hat{i}-8 \hat{j}) \mathrm{m} / \mathrm{s}$
$\therefore \mathrm{u}_{\mathrm{AB}}=8 \sqrt{2} \mathrm{~m} / \mathrm{s}$
Acceleration of A relative to B is -
$\vec{a}_{A B}=\vec{a}_{A}-\vec{a}_{B}=(-2 \hat{i}+2 \hat{j}) \mathrm{m} / \mathrm{s}^{2}$
$\therefore \mathrm{a}_{\mathrm{AB}}=2 \sqrt{2} \mathrm{~m} / \mathrm{s}^{2}$
since B observes initial velocity and constant acceleration of A in opposite directions, Hence B observes A moving along a straight line.
From frame of B
Hence time when $v_{A B}=0$ is $t=\frac{u_{A B}}{a_{A B}}=4$ sec.
The distance between A \& B when $v_{A B}=0$ is $S=$ $\frac{u_{A B}^{2}}{2 a_{A B}}=16 \sqrt{2} \mathrm{~m}$

The time when both are at same position is -
$T=\frac{2 u_{A B}}{a_{A B}}=8 \mathrm{sec}$.
Magnitude of relative velocity when they are at same position in $\mathrm{u}_{\mathrm{AB}}=8 \sqrt{2} \mathrm{~m} / \mathrm{s}$.

DPP NO. - 19

2. $\ln (A) \quad x_{t}-x_{i}$
$0-x=-x=-v e$
So average velocity is -ve.
3. From the graph ; we observe that slope is non-zero positive at $\mathrm{t}=0$ \& slope is continuously decreasing with time and finally becomes zero. Hence we can say that the particle starts with a certain velocity, but the motion is retarded (decreasing velocity)
4. Suppose particle strikes wedge at height ' S ' after time $t . S=15 t-\frac{1}{2} 10 t^{2}=15 t-5 t^{2}$. During this time distance travelled by particle in horizontal direction $=5 \sqrt{3} \mathrm{t}$. Also wedge has travelled travelled extra distance

$x=\frac{S}{\tan 30^{\circ}}=\frac{15 t-5 t^{2}}{1 / \sqrt{3}}$
Total distance travelled by wedge in time
$\mathrm{t}=10 \sqrt{3} \mathrm{t} .=5 \sqrt{3} \mathrm{t}+\sqrt{3}\left(15-5 \mathrm{t}^{2}\right)$
$\Rightarrow \mathrm{t}=2 \mathrm{sec}$.

Alternate Sol.

(by Relative Motion)

$$
\begin{aligned}
& T=\frac{2 u \sin 30^{\circ}}{g \cos 30^{\circ}}=\frac{2 \times 10 \sqrt{3}}{10} \times \frac{1}{\sqrt{3}}=2 \mathrm{sec} . \\
& \Rightarrow t=2 \text { sec. }
\end{aligned}
$$

5.

As given
$\left(V_{A}-V_{B}\right) \propto X_{A}-X_{B}$
$\left(V_{A}-V_{B}\right)=K\left(x_{A}-x_{B}\right)$
when $x_{A}-x_{B}=10$ We have $V_{A}-V_{B}=10$
We get
$10=K 10 \Rightarrow K=1$
$\Rightarrow V_{A}-V_{B}=\left(x_{A}-x_{B}\right)$.
Now Let
$x_{A}-x_{B}=y$
On differentiating with respect to ' t ' on both side.

$$
\begin{align*}
& \Rightarrow \frac{d x_{A}}{d t}-\frac{d x_{B}}{d t}=\frac{d y}{d t} \Rightarrow V_{A}-V_{B}=\frac{d y}{d t} \tag{3}\\
& \Rightarrow \text { Using (1), (2), (3) }
\end{align*}
$$

We get $\quad \frac{d y}{d t}=y$
Here y represents sepration between two cars
$\Rightarrow \int_{10}^{20} \frac{\mathrm{dy}}{\mathrm{y}}=\int_{0}^{\mathrm{t}} \mathrm{dt} \Rightarrow\left[\log _{\mathrm{e}} \mathrm{y}\right]_{10}^{20}=\mathrm{t}$
$t=\left(\log _{\mathrm{e}} 2\right)$ sec \quad Required Answer.

Alter. (Assume to be at rest)
$\mathrm{V}=\mathrm{ks}$
$V=10, s=10, k=1$
$\frac{d s}{d t}=s \quad \int_{10}^{20} \frac{d s}{s}=\int_{0}^{t} d t$

6 to 8. At $t=2 \sec \quad(t=2 \sec i j)$
$v_{x}=u_{x}+a_{x} t=0+10 \times 2=20 \mathrm{~m} / \mathrm{s}$
$v_{y}=u_{y}+a_{y} t=0-5 \times 2=-10 \mathrm{~m} / \mathrm{s}$
$v=\sqrt{v_{x}^{2}+v_{y}^{2}}=\sqrt{(20)^{2}+(-10)^{2}}=10 \sqrt{5} \mathrm{~m} / \mathrm{s}$
From $t=0$ to $\mathrm{S}=4 \mathrm{sec}$

$$
\begin{aligned}
x= & {\left[\frac{1}{2}(10)(2)^{2}\right]_{(0 \rightarrow 2)}+\left[(10 \times 2) 2-\frac{1}{2}(10)(2)^{2}\right]_{(2 \rightarrow 4)} } \\
& x=40 \mathrm{~m} \\
y= & {\left[-\frac{1}{2} 5(2)^{2}\right]_{(0 \rightarrow 2)}-\left[\left(10(2)-\frac{1}{2}(10)(2)^{2}\right]_{(2 \rightarrow 4)}\right.} \\
& y=-10 \mathrm{~m}
\end{aligned}
$$

Hence, average velocity of particle between $t=0$
to $t=4 \mathrm{sec}$ is
$\mathrm{v}_{\mathrm{av}}=\frac{\Delta \mathrm{x}}{\Delta \mathrm{t}}=\frac{\sqrt{(40)^{2}+(-10)^{2}}}{4}$
$\mathrm{v}_{\mathrm{av}}=\frac{5}{2} \sqrt{17} \mathrm{~m} / \mathrm{s}$
At $t=2 \mathrm{sec} \quad u=10 \times 2=20 \mathrm{~m} / \mathrm{s}$
After $\quad t=2 \mathrm{sec}$
$v=u+a t$
$0=20-10 t$
$t=2 \mathrm{sec}$.

Hence, at $\mathrm{t}=4 \mathrm{sec}$. the particle is at its farthest distance from the y-axis.
The particle is at farthest distance from y-axis at t ≥ 4. Hence the available correct choice is $t=4$.

$$
V \propto s
$$

DPP NO. - 20

1. If speed of a particle changes, the velocity of the particle definitely changes and hence the acceleration of the particle is nonzero.
Velocity of a particle change without change in speed.
When speed of a particle varies, its velocity cannot be constant.
2. $V_{w}=1 \hat{i}+1 \hat{j}$

$\mathrm{V}=\mathrm{at}$
$\mathrm{V}=(0.2) 10$
$=2 \mathrm{~m} / \mathrm{sec}$.
$V_{\text {boat }}=2 \hat{i}+2 \hat{j}$
$\mathrm{V}_{\text {wboat }}=\mathrm{V}_{\mathrm{w}}-\mathrm{V}_{\text {boat }}$
$V_{\text {wboat }}=(1 \hat{i}+1 \hat{j})-(2 \hat{i}+2 \hat{j})=-1 \hat{i}-1 \hat{j}$
So, the flag will flutter towards south-west.
3. The retardation is given by

$$
\frac{d v}{d t}=-a v^{2}
$$

integrating between proper limits

$$
\begin{aligned}
& \Rightarrow-\int_{u}^{v} \frac{d v}{v^{2}}=\int_{0}^{t} a d t \quad \text { or } \quad \frac{1}{v}=a t+\frac{1}{u} \\
& \Rightarrow \frac{d t}{d x}=a t+\frac{1}{u} \quad \Rightarrow \quad d x=\frac{u d t}{1+a u t}
\end{aligned}
$$

integrating between proper limits

$$
\Rightarrow \quad \int_{0}^{s} d x=\int_{0}^{t} \frac{u d t}{1+a u t} \Rightarrow S=\frac{1}{a} \ln (1+a u t)
$$

4. $V=a+b x$
(V increases as x increases)
$\frac{d V}{d t}=b \quad \frac{d x}{d t}=b V$
hence acceleration increases as V increases with X.
5. $\vec{v}=-\hat{i}+\hat{j}+2 \hat{k}$
$\vec{a}=3 \hat{i}-\hat{j}+\hat{k}$
$\vec{a} \cdot \vec{v}=-3-1+2<0$
hence $\theta>90^{\circ}$ between \vec{a} and \vec{v} so speed is decreasing
$\vec{a} . \vec{v}=-3-1+2<0$
6. Solving the problem in the frame of train. Taking origin as corner 'B'

Along x axis x -
$x=u \cos \theta t$
Along y axis y -
$y=u_{y} t+\frac{1}{2} a_{y} t^{2}$

$0=u \sin \theta t-\frac{1}{2} a t^{2}$
As the ball is thrown towards ' D '
$\tan \theta=\frac{\ell}{\mathrm{x}}$
From equation (1), (2) \& (3) we get
$\mathbf{t}=\sqrt{\frac{2 \ell}{\mathrm{a}}}$ required time after which ball hit the corner.
8. At position A balloon drops first particle So, $u_{A}=0, a_{A}=-g, t=3.5 \mathrm{sec}$.
$S_{A}=\left(\frac{1}{2} g t^{2}\right)$
Balloon is going upward from A to B in 2 sec.so distance travelled by balloon in 2 second.
$\left(S_{B}=\frac{1}{2} a_{B} t^{2}\right)$
$a_{B}=0.4 \mathrm{~m} / \mathrm{s}^{2} \quad, \quad t=2 \mathrm{sec}$.
$S_{1}=B C=(S B+S A)$
Distance travell by second stone which is droped from balloon at B
$\mathrm{u}_{2}=\mathrm{u}_{\mathrm{B}}=\mathrm{a}_{\mathrm{B}} \mathrm{t}=0.4 \times 2=0.8 \mathrm{~m} / \mathrm{s}$
$t=1.5 \mathrm{sec}$.
$\left(S_{2}=u_{2} t-\frac{1}{2} g t^{2}\right)$

Distance between two stone
$\Delta S=S_{1}-S_{2}$

DPP NO. - 21

1.

Q measures acceleration of P to be zero.
\therefore Q measures velocity of P, i.e. $\overrightarrow{\mathrm{v}}_{\mathrm{PQ}}$, to be constant. Hence Q observes P to move along straight line.
\therefore For P and Q to collide Q should observe P to move along line $P Q$.
Hence PQ should not rotate.
2. Let initial and final speeds of stone be u and v.
$\therefore \quad \mathrm{v}^{2}=\mathrm{u}^{2}-2 \mathrm{gh}$
and $v \cos 30^{\circ}=u \cos 60^{\circ}$
solving 1 and 2 we get $\quad u=\sqrt{3 g h}$
3. Flag will flutter in the direction of wind and opposite to the direction of velocity of man
i.e. in the direction of V_{wm}

4. (i)

$$
a=0
$$

(ii)

$a=\frac{2 F}{4 m}=\frac{F}{2 m}$

$\mathrm{F}-\mathrm{N}=\mathrm{ma}$
$N=F-m\left(\frac{F}{2 m}\right)=\frac{F}{2}$.
(iii)

$$
a=\frac{3 F}{4 m}
$$

$\mathrm{F}-\mathrm{N}=\mathrm{ma}$
$\mathrm{N}=\mathrm{F}-\mathrm{ma}$
$N=F-m\left(\frac{3 F}{4 m}\right)$
$N=\frac{F}{4}$.
(iv)

$$
a=\frac{3 F}{4 m}
$$

$2 F-N=m a \quad N=2 F-m\left(\frac{3 F}{4 m}\right)$
$N=\frac{5 F}{4}$.
(v)

$$
a=\frac{3 F}{3 m}=\frac{F}{m}
$$

$\mathrm{N}+\mathrm{F}=\mathrm{ma}$
$N+F=m\left(\frac{F}{m}\right)$
$N=0$.
5. F.B.D. of block
$\mathrm{N}^{2}=\mathrm{F}^{2}+(\mathrm{mg})^{2}$
$N=10 \sqrt{2} N$
6. $A B=2 R \cos \theta$
acceleration along $A B$
$a=g \cos \theta$
$u=0$ from A to B
$S=u t+\frac{1}{2} a t^{2}$

$2 R \cos \theta=0+\frac{1}{2}(g \cos \theta) t^{2}$
$t=2 \sqrt{\frac{R}{g}}$
7. Unit vector in direction of $(1,0,0)$ to $(4,4,12)$ is

$$
\frac{(4-1) \hat{i}+(4-0) \hat{j}+(12-0) \hat{k}}{13}
$$

Hence position of particle at $t=2$ sec is :

$$
\vec{r}_{f}=\vec{r}_{i}+\overrightarrow{\mathrm{v}} \times 2=31 \hat{i}+40 \hat{j}+120 \hat{k}
$$

8. $\quad \mathrm{a}=\frac{\mathrm{F}}{\mathrm{m}} \quad \mathrm{V}^{2}=\mathrm{u}^{2}+2 \mathrm{as} \quad(\mathrm{u}=0)$

$$
V \propto \sqrt{2\left(\frac{F}{m}\right) S} V \propto \frac{1}{\sqrt{m}}
$$

DPP NO. - 22

1. From geometry:
$\cos \theta=\frac{3}{5}$
$\sin \theta=\frac{4}{5}$

As sphere is at equilibrium,
$\mathrm{T} \sin \theta=\mathrm{w}$
$T\left(\frac{4}{5}\right)=w$
$T=\frac{5 w}{4}$.
2. Resolving forces at point A along string $A B$

$$
\mathrm{w}_{1} \cos 37^{\circ}=\mathrm{w}_{2}
$$

$\frac{w_{1}}{w_{2}}=\frac{5}{4}$
3. $v=0 \Rightarrow x^{2}-5 x+4=0$
$x=1 m \& 4 m$
$\frac{d v}{d t}=(2 x-5) v=(2 x-5)\left(x^{2}-5 x+4\right)$
at $\mathrm{x}=1 \mathrm{~m}$ and $4 \mathrm{~m} ; \frac{\mathrm{dv}}{\mathrm{dt}}=0$
4. $\mathrm{a}=\left(\frac{5-4}{5+4}\right) \mathrm{g}=\frac{\mathrm{g}}{9}$
$\mathrm{T}-\mathrm{mg}=\mathrm{ma}$

$T=m(g+a)$
$=1\left(g+\frac{g}{9}\right)=\frac{10 g}{9}$.
5. Time taken by ball from O to A is same as that from A to B.

$10=15 t-\frac{1}{2}(10) t^{2}$
$5 t^{2}-15 t-10=0$
$t^{2}-3 t-2=0$
$\mathrm{t}=1$, 2
$t=2$ is invalid as it is the time taken by the ball to come at A^{\prime} if there was no roof.
6.

$r=5 \mathrm{~cm} ; R=8 \mathrm{~cm}$
FBD of sphere 1

$\mathrm{N}_{1}=\mathrm{W}+\mathrm{N}_{3} \sin \theta$
$N_{2}=N_{3} \cos \theta$
FBD of sphere 2

$A C=2 R-2 r$
$A B=2 r$
$\cos \theta=\frac{A C}{A B}=\frac{R-r}{r}$
$\mathrm{N}_{4}=\mathrm{N}_{3} \cos \theta$
$\mathrm{W}=\mathrm{N}_{3} \sin \theta$
Ans. $\mathrm{N}_{4}=\mathrm{W} \cot \theta$
$\mathrm{N}_{3}=\mathrm{W} \operatorname{cosec} \theta$
$\mathrm{N}_{2}=\mathrm{W} \cot \theta$
$\mathrm{N}_{1}=2 \mathrm{~W}$.
7. $\Rightarrow 0.2 \mathrm{~g}=0.7 \mathrm{a}$
$\Rightarrow \mathrm{a}=\frac{2 \mathrm{~g}}{7} \mathrm{~m} / \mathrm{s}^{2}$
For the case, it comes to rest when $\mathrm{V}=0$
$\therefore \mathrm{t}=1$ seconds.
$0=7+\left(-\frac{2 g}{7}\right) t \Rightarrow t=\frac{49}{2 g}=2.5 \mathrm{~s}$

$\mathrm{T}=0.5 \mathrm{a}$

$0.2-\mathrm{T}=0.2 \mathrm{a}$

Distance travelled till it comes to rest
$0=7^{2}+2\left(-\frac{2 g}{7}\right) s$
$\mathrm{S}=8.75 \mathrm{~m}$
So in next 2.5 s , it covers 8.75 m towards right.
Total distance $=2 \times 8.75=17.5 \mathrm{~m}$
After 5 s , it speed will be same as that of initial (7 m / s) but direction will be reversed.
8. Acceleration of system $a=\frac{F}{m_{A}+m_{B}+m_{C}}$
$\mathrm{a}=\frac{60}{10+20+30}=1 \mathrm{~m} / \mathrm{s}^{2}$
FBD of A :

$\mathrm{T}_{1}=\mathrm{m}_{\mathrm{A}} \cdot \mathrm{a}$
$\mathrm{T}_{1}=10(1)=10 \mathrm{~N}$
FBD of B :

$\mathrm{T}_{2}-\mathrm{T}_{1}=\mathrm{m}_{\mathrm{B}} \mathrm{a}$
$\mathrm{T}_{2}-10=20(1)$
$\mathrm{T}_{2}=30 \mathrm{~N}$.

